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Science is impossible without variety but may not need wave functions ψ. Particles in space
separated by distances rij = |ri − rj |, i, j = 1, . . . N , define a minimal model universe. Particles
with masses mi,

∑
imi = 1, have, respectively, root-mean-square and mean-harmonic lengths

`rms :=
√∑

i<j

mimjr2ij , `−1
mhl :=

∑
i<j

mimj

rij
. (1)

Their ratio `rms/`mhl = C, called the complexity in [1], is the Newton potential made scale-invariant,
and a sensitive measure of clustering; if the particles cluster, `rms changes little but `mhl decreases
significantly. A long-standing problem in quantum gravity is the definition of time; many believe
it should be a variable that describes the universe. In that spirit, C is a candidate. Being positive
definite, bounded below by a Cmin, and unbounded above, C defines a time that begins but never
ends. Moreover, the universe is born maximally uniform, becoming thereafter evermore varied.
Manuel Izquierdo [2] found typical shapes at birth and soon after for a 1000-particle universe in
two dimensions (Figs. 1 and 2). They are critical points of C, and therefore central configurations
(CCs) [3], but typical of many shapes with the same C [4].

It is the simplicity of C’s definition and the structure of its CCs that leads me to question
whether h exists. The CC in Fig. 1, with C at or very near Cmin, is not new; ones much like it
exist in three dimensions [5]. Newton’s potential theorem explains their strikingly uniform density
within an almost perfect sphere. The 2D rather than 3D calculation explains the slight radial
density decrease in Figs. 1–3. The remarkable variety of the voids and filaments in Fig. 2 were a
fortuitous discovery of Izquierdo, who, unlike previous researchers, looked for many-particle CCs
with C not only very close to Cmin, but also a bit above it (by ≈ 1.5% in fact).
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Now for my doubts, expressed briefly due to the nature of this note. The quasi-crystalline
structure of Fig. 1 is the first. In fact, BCC crystallisation in CCs of 100,000 particles was found
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in [6]. Crystals, indeed all solids, are seen as quintessential quantum structures explained by wave-
function antisymmetry of fermions [7]. I’m not aware anyone has suggested scale-invariant variety
by itself can make a wave function ψ redundant, but the simple fact that there are vastly more
ways to increase C from its value for Fig. 1 by changing all the rij slightly than by moving a few
closer together explains [4] why the smallest rij in the filaments of Fig. 2 are very nearly equal.
Remarkably, this effect is repeated in other filaments with successively greater separations but with
no obvious statistical explanation. Izquierdo’s red–orange–yellow coloured sequence of filaments in
a typical 100-particle CC in Fig. 3 highlights the effect; it would be even more striking without the
rij-increasing 2D edge effect. Is it fanciful to see in Figs. 2 and 3 protein chains in protozoic cells?
If work in hand shows that, in all such CCs, the separations go up in steps that to a good accuracy
are the same, that would cast more doubt on the need for wave functions. The paramount condition
for that is met: correlations of arbitrarily long range exist everywhere in profusion. There are ≈ N
of them between the N(N − 1)/2 separations rij , which just 3N − 6 coordinates determine. Figure
2 is redolent of quantum-like probabilities; for example, given as a Bayesian prior that a closed
loop of x links exists somewhere, how many particles can one expect to find within it? It is the
correlations between a source, two slits, and the pattern of fringes on an emulsion that are so hard
to explain without interfering ψ branches. The same is true of the Bell inequalities, now confirmed
over seemingly arbitrary distances. Figures 1–3 suggest that the holistic nature of shapes with given
C, whether CCs or not, may allow a top-down explanation of facts that baffle in a reductionist,
bottom-up approach. In this connection, consider the actual evidence for quantum mechanics. In
the early days it was mostly in photographs taken in laboratories. Indeed, what might be called
generalised photographs—records encoded in distributions of matter—remain the sole source of
evidence for wave functions. Examples are the huge detectors at the LHC. But they and it are
the tiniest part of the universe. Were the theoreticians who invoked wave functions ‘looking in the
wrong direction’. Did they need, but could not get, a snapshot of the whole universe containing
within it the laboratory photographs? Suppose a dime, representing the region captured in such
a photograph, is placed anywhere on the images in Figs. 2 or 3. The single condition that C be
critical fully explains the highly correlated structure the dime covers. There is no need for any
ψ. Lack of space precludes further discussion here, but as Tim Koslowski said, if there is no wave
function, that at least solves the measurement problem of how it collapses.

Thanks. To Manuel Izquierdo for the figures; Richard Montgomery, Alain Chenciner, and Alain
Albouy for teaching me much of what I know about the Newtonian N -body problem; and my
coauthors Tim Koslowski and Flavio Mercati of [1]. A great deal of what I discuss in [4] has arisen
from discussions with them, above all Tim’s fermionic interpretation of the particles and his insight,
critical in [4], that, independently of any conjectured wave function Ψ of the universe, a Born-type
probability density exists on the isocomplexity subspaces of any shape space.
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